$$
\text { ola-step } 1 .
$$

OPERATION: INITIAL OXIDATION
TEMPERATURE: $1050^{\circ} \mathrm{C}$
PROCEDURE:

STEP
PROCEDURE

1. Turn off Nitrogen
2. Turn on Oxygen
3. Leave oxygen on 15 minutes - Purge
4. Remove end cap, attach elephant with wafers previously loaded onto ladder boat
5. Push ladder boat into center hot zone, 5-10 seconds push
6. Attach vented cap to exhaust - ω averhal?
7. After five minutes, turn off Oxygen, tum on O_{2} - HCl
8. After 40 minutes, turn off $0_{2}-\mathrm{HCl}$, turn on Oxygen
9. After 5 minutes, withdraw boat into elephant via 10-15 second pull
10. Remove elephant, replace on caps onto furnace tube and elephant
11. Turn off Oxygen
12. Turn on Nitrogen

SETTING

13 GL.

Note: Step \#2 is missing

PILOIO RESIST STRIP - CAROS

EQUIPMENT:

1) Hot Plate
2) 3000 ml beaker
3) Toflon boat and crigger handle

PROCEDURE:

1) Place 1500 ml of Sulfuric Acid onto hot place and heat to max. of $40^{\circ} \mathrm{C}$.
2) Pour in 1500 ml of Hydrogen Peroxide. (unstabilized) Providing temp is not above $40^{\circ} \mathrm{C}$.
3) Check reaction temp for a minimum of $140^{\circ} \mathrm{C}$.
4) Place wafers into caros for 15 minutes.
5) Remove work and place into 1st rinse tank for 2 minutes.
6) Move work to 2nd rinse tank for 5 minutes.
7) Super Q
8) Spin Dry

OPERATION: PYROLYTIC OXIDE DEPOSITION (PACIFIC WESTHRN MACHINE)
TEMPERATURE: $410^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ (By Thermocouple)
Procedure :

STEP	PROCEDURE	SETTING
1.	Heat up machine with city water on	13 SS
2.	Turn Temperature controller to	$\simeq 435$
3.	Turn on Oxygen	6.5 SS
4.	Turn on Silane	7 SS
5.	Check Nitrogen flow ratos*	$\begin{aligned} & \mathrm{N}_{2} 10 \mathrm{SS} \\ & \mathrm{~N}_{2} \quad 9 \mathrm{SS} \end{aligned}$
6.	Cheek exhaust setting on magnehelic	20-30
7.	When susceptor is up to temperature, load wafers 2 or 3 abreast (Maximum of 18 wafers por susceptor)	
8. **	Adjust speed setting to that roquired such that thickness specified is obtained with 1 pass of susceptor under gas distribution head	
9.	Start susceptor scan	
10.	Remove deposited wafers aftor suscaptor stops	
11.	When all wafers are deposited por 7-10, turn off Siland a Oxygen***	
12.	Turn off main power to machine	

* For Bosphorus glass deposition, open fully dopant flow metor and set digital meter at 5.5 and 7.3 for Diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ and Phosphine (PH_{3}) respectivoly; these settings will result in dopant flow moter reading of ≈ 10 SS after $5-5$ minutes purge.
** Speed settings are as follows for various glasses required:

REQUIREMENT	SETTING
- \$500	4153
$13 \mathrm{Mole} \mathrm{\%}$ Bosphorus Glass ($7500 \mathrm{~A}^{\circ}$)	$\cong 180$ (2.3 $\mathrm{in} / \mathrm{min})$
Ondoped Pyro Overlay ($6000 \mathrm{~A}^{\circ}$)	\% 190 (2.45 $\mathrm{In} / \mathrm{min})$
Undoped Fleld Oxide ($6000 \mathrm{~A}^{3}$)	$\cong 190(2.45 \mathrm{in} / \mathrm{min})$
Undoped Oxide Mask for Nitride (250040)	$\cong 300(4.1 \mathrm{~m} / \mathrm{min})$

*** For Bosphorus glass deposition, turn off nain Phosphine and Diborane cylinder valves, turn on Nitrogen purge valves, and purge ninimun of 10 ninutes before turning off machine.

$0195 \operatorname{top}(1) 5$,

II WAFER SCRUBBER

MACHINE OPERATION:
(1) Fill pressure tanks

> Tank $I=F C \cdot 95+H_{2} O$
> Tank $I I=D I H_{2} O$
> Tank $I I I=I P A ~(J e e-p n a p h$ alas,$\ell)$
(2) Press "ON" button
(3) Press "RECYCLE" button
(4) Insert Teflon boats into respective tracks
(5) Press "Auto Cycle" button \& "Cycle Start" button
(6) Check cycle times $\frac{\&}{4}$ spin speeds:

$$
\begin{aligned}
& \text { Cycle I }=5^{\prime \prime} \mathrm{FC93*H}_{2} \mathrm{O}-800 \mathrm{RPM} \\
& \text { Cycle II }=3^{\prime \prime} \text { DI H } 2^{\circ}-800 \mathrm{RMP} \\
& \text { Cycle III }=3^{\prime \prime} \mathrm{IPA} \quad-800 \mathrm{RPM} \\
& \text { Cycle IV }=5^{\prime \prime} \text { Spin Dry }-6000 \mathrm{RPM}
\end{aligned}
$$

Daily Check Out:

Every morning machine is to be checked out by running 3 virgin wafers thru the complete cycle. Upon completion of scrubbing operation, the 3 wafers are to be checked out for dirt particals under a collimated light soarce. If wafers are dirty notify supervisor immediately.

OPERATION: FIELD OXIDE DENSIFICATION (019)
TEMPERATURE: $950^{\circ} \mathrm{C}$
PROCEDURE:

1. Remove end cap, attach elephant with wafers previously loaded onto ladder boat
2. Push boat into center zone, 5-10 second push
3. Attach vented cap from elephant to exhaust
4. Turn off Nitrogen, turn on $\mathrm{O}_{2}-\mathrm{HCl} \quad 5.5 \mathrm{SS}$
5. After 30 minutes, turn off $\mathrm{O}_{2}-\mathrm{HCl}$, turn on Nitrogen
5.5 SS
6. After 5 minutes, remove vented cap and withdraw boat into elephant via $5-10$ second pull
7. Remove elephant, replace end caps onto furnace tube and elephant

14002 1053 		$\begin{aligned} & 3 \\ & \frac{1}{5} \\ & \frac{1}{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { vNF- } \\ & \text { (14) }=(10) \end{aligned}$				$\left.\begin{array}{l\|} 0 \\ E \\ D \\ 7 \\ E \\ 1 \\ 0 \\ p \end{array} \right\rvert\,$	$\begin{aligned} & 1 \\ & \frac{1}{\mathrm{~N}} \\ & 3 \\ & 0 \\ & 0 \\ & \frac{1}{5} \\ & 1 \end{aligned}$		$\int_{(E)}$		$\begin{aligned} & n \\ & 1 \\ & N \\ & \frac{N}{3} \\ & \# \end{aligned}$	$\begin{aligned} & \text { SPW } \\ & \text { DRY } \end{aligned}$	$\begin{aligned} & 1 \\ & \frac{1}{X} \\ & S \\ & \text { B } \\ & \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{~T} \end{aligned}$	$\begin{gathered} \text { 3ERY } \\ (y) \end{gathered}$	$\begin{aligned} & 30=1 \\ & \text { (12) } \end{aligned}$		RLSSL byrimuk．	$\begin{aligned} & \text { suphen } \\ & \text { (in } \end{aligned}$	Sim
$\frac{8}{8}$	Br．	$\begin{aligned} & 48 \\ & 2+02 \end{aligned}$	${ }^{3 e^{\prime}} / /_{160}$	4x	${ }^{311} \text { ' }<100$	421＂	$3 / 2 / 2$	YLIS	381／280		$\frac{4+5-5}{1+5}$	$\frac{21}{21} 5$	$\frac{125}{45}$	$\begin{array}{ll} \mathrm{so} \\ \mathrm{VES} \end{array}$	$\frac{\text { anos }}{160}$		$\frac{31}{21}$	$\frac{5^{\prime \prime}}{5^{1}}$	$\frac{151}{151}$	$\frac{\text { Hes }}{1 / 4}$
emation	3 K	－	＂	\cdots	\square	10．	＂	YE8	$2^{3} 151$	NTKSE	－	．	＊	－	Civos	45＇	2	3	15^{\prime}	\underline{x}
$\text { Poly- } \frac{111}{}$	加	＂	＂	＂	＂	$10^{\prime \prime}$	4	WEF	${ }^{30} / 150$	日i，	$45^{\prime \prime}$	$2^{\prime}-5 \cdot$	YRS：	185	canos	snr	${ }^{2}$	5	151	YES
	tr	＂	＂	＂	＂	pat ${ }^{\text {＂}}$	\％	Y 7 S	π	$\begin{aligned} & \text { ins }(8) \\ & M 10] \end{aligned}$	$\frac{34,-5{ }^{2}}{101}$	21.5	\％	$\frac{\mathrm{r} \% \mathrm{~s}}{} \frac{1}{\mathrm{r}}$		35^{4}	$\frac{\pi}{2 I}$	है।	$\frac{-211}{131}$	Vi
3ns व䯩和	好	\cdots	＋	－	＂	10°	4	Yis	＊	nut	31	$2^{t}-5^{\prime}$	YeS	YRS	Casos	30°	$2 \cdot$	5.	16^{\prime}	NLS
） ESJ土 $^{\text {红 }}$	14	＂	H	4	＂	5＋11	＂	v2s	＂	PWA	$2-10^{4}$	2\％－5．	Ves	YES	1－100	－	21	3	191	
avanix	2T	kT\％	＊	＂		5.	2／1\％		＂	PNSS：	14＇	3＇－5＇	VES	－	（1200	－	21	51	$15{ }^{1}$	YuS

[^0]IKSPECTION GUIDELINES

Step 12, 19,
$24,32,39$
44,49

SILICON ETCH (8 -25-10)

PREPARATION:

(1) Insert 3 dumy wafers into a Teflon etch boat and otch for 1 hour before attempting to etch lot.
(2) Aftex etch has been primed, insert 6 good wafors into etch solution for $1^{\prime} 45^{\prime \prime}$.
(3) Rinse and cut a sliver off of one wafer.
(4) Strip in H.F., rifise, dry and measure otch step with dektac. If moasurement falls between 1500-2500 A proceed to etch balance of lot 6 wafers at a time. Note and record measurement on run sheet.
(5) If measurement falls above or especially below the $1500-2500 \AA$ range-notify supervisor inmediately. DO NOT PROCEED WTTH BALANCE OF LOT:

[^0]:
 （in）sori 10 LCmLT

